

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 1

N A V I G A T I N G Y O U R C O N T E N T M I G R A T I O N

Author: Derek Hunziker, Director, Digital Technology
Date: October 9, 2024

A Guide to Migrating Content from Sitecore XM™ to XM Cloud™

On its face, migrating content from Sitecore XM™ or Sitecore XP™ to XM Cloud™ can

appear to be a complex process, but with the right approach, it becomes much more

manageable. Whether you're aiming to take advantage of XM Cloud’s headless

architecture, improve performance, or streamline content delivery, this guide will help

you migrate your valuable content into XM Cloud using the best migration strategy for

your needs.

This guide focuses on three primary migration approaches: Sitecore Packages,

Sitecore PowerShell Extensions (SPE), and the Sitecore XM Cloud Migration
Assistant. Each method has its strengths and limitations, depending on your project’s

scale, customization requirements, and timeline. We’ll explore how each approach

works, provide practical examples, and highlight the pros and cons to help you make

an informed decision.

Contents:

Sitecore Packages ... 2
Sitecore PowerShell Extensions (SPE)... 3
Sitecore XM Cloud Migration Assistant .. 6
Conclusion ...7

Sitecore on Sitecore
Learn more

https://www.sitecore.com/resources/sitecore-on-sitecore

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 2

Sitecore Packages

As of the release of this guide, the Sitecore Package Designer remains supported in
XM Cloud. This type of package is essentially a .zip file containing serialized items that
are created using the Package Designer utility and installed via the package
Installation Wizard. While newer serialization and packaging options exist in the form
of Sitecore Content Serialization (SCS) Packages, this guide focuses on Package
Designer for its simplicity, ease of use, and compatibility with older Sitecore versions.

Steps

1. Access your XM environment.

2. From the Desktop view, access the Package Designer under the
Development Tools menu.

3. Use the Package Designer utility to package up items, starting from base
templates (e.g., Foundation layers).

4. Work your way up the dependency chain to include content items (e.g.,
pages).

5. Install the packages via the Installation Wizard in the target XM Cloud
environment.

Example

Create separate packages for Foundation, Feature, and Project layers, ensuring that all
dependencies are properly packaged. Once all dependencies are migrated, package
and install page items.

https://doc.sitecore.com/xp/en/developers/latest/developer-tools/create-and-install-a-sitecore-content-serialization-package.html#create-an-scs-package-in-your-build-pipeline

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 3

Pros

• Simplicity: Easy to use graphical interface for cherry-picking items.
• Incremental: Packages can be saved and updated over time, allowing for

gradual migration.

Cons

• Manual effort: Requires manual packaging, which may lead to missed items or
human error.

• No modification: Does not allow for refactoring during migration; it merely
transfers items.

• Slow: Manually creating packages and installing them is a time-consuming
process.

Sitecore PowerShell Extensions (SPE)

Sitecore PowerShell Extensions (SPE) provide access to Sitecore APIs for manipulating
items programmatically. By surfacing the XM master database in XM Cloud, you can
perform Create, Read, Update, and Delete (CRUD) operations between both
databases, allowing for more flexible migration scenarios. This is particularly useful in
scenarios where template schemas and field names differ between XM and XM Cloud.

Steps

1. Attach the XM master database to XM Cloud using a configuration patch file
(see example below)

2. Use SPE scripts to perform CRUD operations, such as reading or iterating
content from the old master database while creating items in the new
database.

3. Migrate content between environments while performing any necessary
transformations to the content. For example, a typical migration script may
contain conditional logic to read from one or more fields from the XM master
database. It’s also common to traverse child items and/or datasources to
extract the necessary content from XM before migrating it into XM Cloud.

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 4

Example

<?xml version="1.0" encoding="utf-8"?>
<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"
xmlns:env="http://www.sitecore.net/xmlconfig/env">
 <sitecore env:require="!Development">
 <eventing defaultProvider="sitecore">
 <eventQueueProvider>
 <eventQueue name="oldmaster" patch:after="eventQueue[@name='web']"
type="Sitecore.Data.Eventing.$(database)EventQueue, Sitecore.Kernel">
 <param ref="dataApis/dataApi[@name='$(database)']" param1="$(name)" />
 <param hint="" ref="PropertyStoreProvider/store[@name='$(name)']" />
 </eventQueue>
 </eventQueueProvider>
 </eventing>
 <PropertyStoreProvider>
 <store name="oldmaster" patch:after="store[@name='web']" prefix="preview"
getValueWithoutPrefix="true" singleInstance="true"
type="Sitecore.Data.Properties.$(database)PropertyStore, Sitecore.Kernel">
 <param ref="dataApis/dataApi[@name='$(database)']" param1="$(name)" />
 <param resolve="true" type="Sitecore.Abstractions.BaseEventManager,
Sitecore.Kernel" />
 <param resolve="true" type="Sitecore.Abstractions.BaseCacheManager,
Sitecore.Kernel" />
 </store>
 </PropertyStoreProvider>
 <databases>
 <!-- Old Master-->
 <database id="oldmaster" patch:after="database[@id='web']"
singleInstance="true" type="Sitecore.Data.DefaultDatabase, Sitecore.Kernel">
 <param desc="name">$(id)</param>
 <icon>Images/database_web.png</icon>
 <securityEnabled>true</securityEnabled>
 <dataProviders hint="list:AddDataProvider">
 <dataProvider ref="dataProviders/main" param1="$(id)">
 <disableGroup>publishing</disableGroup>
 <prefetch hint="raw:AddPrefetch">
 <sc.include file="/App_Config/Prefetch/Common.config" />
 <sc.include file="/App_Config/Prefetch/Webdb.config" />
 </prefetch>
 </dataProvider>
 </dataProviders>
 <PropertyStore ref="PropertyStoreProvider/store[@name='$(id)']" />
 <remoteEvents.EventQueue>

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 5

 <obj ref="eventing/eventQueueProvider/eventQueue[@name='$(id)']" />
 </remoteEvents.EventQueue>
 <archives hint="raw:AddArchive">
 <archive name="archive" />
 <archive name="recyclebin" />
 </archives>
 <cacheSizes hint="setting">
 <data>100MB</data>
 <items>50MB</items>
 <paths>2500KB</paths>
 <itempaths>50MB</itempaths>
 <standardValues>2500KB</standardValues>
 </cacheSizes>
 </database>
 </databases>
 </sitecore>
</configuration>

Configuration patch file for XM master database.

Get-ChildItem -Path "oldmaster:/sitecore/content/MyTenant/MySite/Home" -Recurse
-Language "en" | ForEach-Object {

 Write-Host "Old item path:" $_.Paths.ContentPath

 # NOTE: Apply conditions or filtering as needed

 # Create items in XM Cloud "master" database using ID from XM
 # $newItem = New-Item -Path "master:" -Name $_.Name -ItemType [...] -ForceId
$_.ID -Parent [...]
 # $newItem.Editing.BeginEdit()
 # $newItem.Fields["NewField"].Value = $_["OldField"]
 # $newItem.Editing.EndEdit()
}

Creating new items based on old items.

Pros

• Flexibility: Allows content modification (e.g., field cleanup, merging content)
during migration.

• Granular control: Migrate specific items, fields, or languages.

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 6

Cons

• Advanced: Requires in-depth knowledge of PowerShell and Sitecore APIs.
• Not officially supported: May not be viable for future XM Cloud versions and

should be tested thoroughly in non-production environments. Although
intended to be temporary for the purposes of migrating content only,
modifications to XM Cloud are generally discouraged.

Sitecore XM Cloud Migration Assistant

The Sitecore XM Cloud Migration Assistant is based on the Sitecore CLI and
Sitecore Content Serialization (SCS), while future versions aim to take
advantage of Protocol Buffers for even faster performance. In its initial 1.x
version, the tool supports migrating content, media, and user data from
Sitecore XM releases 10.1 and later to XM Cloud, with both CLI and GUI options
available.

Steps

1. Download the CLI or GUI version (linked above).

2. Establish connections between the source XM environment and XM Cloud.

3. Use either the CLI or GUI to migrate content starting with the base
templates.

4. Continue migrating all content and higher-level items such as pages.

https://developers.sitecore.com/downloads/xm-cloud#xm-to-xm-cloud-migration-tool

© 2024 Sitecore A/S or a Sitecore affiliated company. All rights reserved. P 7

Example

Pros

• Official tool: Supported by Sitecore with thorough testing.
• End-to-end: Can migrate content, media, and user data comprehensively.
• Speed: Quick at getting items from XM into XM Cloud.

Cons

• No content modification: The initial version focuses on content transfer
without the ability to modify during migration.

• Version constraints: Limited to migrating from XM versions 10.1 and later.

Conclusion

Each of these approaches offers distinct advantages depending on the complexity
and requirements of the migration. Depending on your project’s needs—whether you
need the simplicity of packages, the flexibility of PowerShell scripts, or the speed and
official support of the XM Cloud Migration Assistant—one of these methods will be a
better fit. Be sure to test thoroughly and document each step to ensure a smooth
transition to XM Cloud.

	Navigating Your Content Migration
	Sitecore Packages
	Steps
	Example
	Pros
	Cons

	Sitecore PowerShell Extensions (SPE)
	Steps
	Example
	Pros
	Cons

	Sitecore XM Cloud Migration Assistant
	Steps
	Example
	Pros
	Cons

	Conclusion

